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Lymphocystis diseases in fish throughout the world have been extensively described. Here we report the
complete genome sequence of lymphocystis disease virus isolated in China (LCDV-C), an LCDYV isolated from
cultured flounder (Paralichthys olivaceus) with lymphocystis disease in China. The LCDV-C genome is 186,250
bp, with a base composition of 27.25% G+ C. Computer-assisted analysis revealed 240 potential open reading
frames (ORFs) and 176 nonoverlapping putative viral genes, which encode polypeptides ranging from 40 to
1,193 amino acids. The percent coding density is 67%, and the average length of each ORF is 702 bp. A search
of the GenBank database using the 176 individual putative genes revealed 103 homologues to the correspond-
ing ORFs of LCDV-1 and 73 potential genes that were not found in LCDV-1 and other iridoviruses. Among the
73 genes, there are 8 genes that contain conserved domains of cellular genes and 65 novel genes that do not
show any significant homology with the sequences in public databases. Although a certain extent of similarity
between putative gene products of LCDV-C and corresponding proteins of LCDV-1 was revealed, no colinearity
was detected when their ORF arrangements and coding strategies were compared to each other, suggesting that
a high degree of genetic rearrangements between them has occurred. And a large number of tandem and
overlapping repeated sequences were observed in the LCDV-C genome. The deduced amino acid sequence of
the major capsid protein (MCP) presents the highest identity to those of LCDV-1 and other iridoviruses among
the LCDV-C gene products. Furthermore, a phylogenetic tree was constructed based on the multiple align-
ments of nine MCP amino acid sequences. Interestingly, LCDV-C and LCDV-1 were clustered together, but
their amino acid identity is much less than that in other clusters. The unexpected levels of divergence between
their genomes in size, gene organization, and gene product identity suggest that LCDV-C and LCDV-1
shouldn’t belong to a same species and that LCDV-C should be considered a species different from LCDV-1.

Lymphocystis disease was discovered early in 1874 (34), but
the viral agent was not detected until 1962 (36). The lympho-
cystis disease virus (LCDV) has been studied by a series of
morphology and ultrastructure observations (2, 3, 15, 27, 36,
47), molecular characterization analysis (5, 7, 9, 12, 29, 30), and
attempts at in vitro infection and propagation (25, 35, 38, 46).
LCDV has been identified as an iridovirus (7, 39) and is distrib-
uted worldwide. The resulting lymphocystis disease has been re-
ported to occur in over 100 different fish species in seawater and
freshwater (34). In recent years, lymphocystis disease has been
reported to occur frequently in cultured flounder (Paralichthys
olivaceus) in China (31, 40), and the causative agent has also been
identified as LCDV-C (LCDV isolated in China) (31, 40, 46).

Iridoviridae have been subdivided into four genera, including
Iridovirus, Chloriridovirus, Ranavirus, and Lymphocystivirus (26).
LCDYV belongs to Lymphocystivirus and is the type species in
the genus. LCDV-1, isolated in the United States, has been
extensively studied, and its genome was characterized by mo-
lecular cloning and physical mapping about 20 years ago (5, 6).
The genome structure, found to be common to other iridovi-
ruses, is circularly permuted and terminally redundant (5, 6, 28,
37). In 1997, the LCDV-1 complete genomic DNA sequence
was determined. The genome is 102,653 bp in length and
contains 195 open reading frames (ORFs) (33). Recently,
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three other genomes of vertebrate iridoviruses, those of the
mandarin fish infectious spleen and kidney necrosis virus
(ISKNV) (13), the tiger frog virus (TFV) (14), and salamander
Ambystoma tigrinum virus (ATV) (19), have been fully se-
quenced and characterized. Because lymphocystis diseases
have been reported to occur in more than 100 different fish
species in seawater and freshwater worldwide (34), some dif-
ferences in genome structure, gene organization, and DNA se-
quence may exist in the virus isolates from different fish species or
from different geographic regions. To reveal the genomic charac-
terization of LCDV-C and to perform comparative-genomics
studies on iridoviruses, we initiated a project to sequence the
LCDV-C genome. Here we report the LCDV-C complete ge-
nome sequence and analyze the structural differences between
LCDV-C and other iridoviruses.

MATERIALS AND METHODS

LCDV-C and its viral-DNA preparation. LCDV-C used in this study was
originally isolated from cultured flounder (Paralichthys olivaceus) with lympho-
cystis disease from Shandong Province of China (31). The lymphocystis tissues
were sampled from the tumor-like dermal lesions of diseased fish and homoge-
nized in phosphate-buffered saline (PBS) containing antibiotics (penicillin [100
TU ml™'] and streptomycin [100 ug ml~']). Extracts were stored overnight at
—20°C, thawed, and clarified by low-speed centrifugation, and the supernatants
containing LCDV-C were ultracentrifuged in a Beckman (rotor type, SW41) at
36,000 rpm (160,000 X g) for 40 min. The pellet was resuspended in 1 ml of PBS
and further purified by using discontinuous sucrose (20, 30, 40, and 50%) gra-
dient centrifugation at 36,000 rpm (160,000 X g) for 40 min. The virus particle
band was collected, and sucrose was removed by further centrifugation. The
purified virus particles were used to extract the LCDV-C genomic DNA by
incubating virus with 0.2 mg of proteinase K/ml-1% sodium dodecyl sulfate at
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37°C for 2 h. Then the DNA was subjected to phenol-chloroform extraction and
ethanol precipitation as described previously (43, 44).

DNA sequencing. The LCDV-C genome was sequenced by a shotgun approach
(41). Briefly, the viral genome DNA was randomly sheared by sonication at 0°C,
and blunt ends of the sonicated fragments were generated with T4 polymerase.
The DNA fragments were size fractionated by gel electrophoresis, and different-
size fragments, such as 1.6 to 2.0 kb, 2.0 to 2.5 kb, and 2.5 to 3.0 kb, were
extracted from the gels by a QIAEXII gel extraction kit. Then the DNA frag-
ments were cloned into the EcoRV site of the pUC18 vector with T4 DNA ligase.
After transformation into Escherichia coli XL-100 competent cells, the recombi-
nant plasmid DNAs were extracted, and the cloned viral DNA fragments were
sequenced in both directions with M13 universal primers and other synthesized
primers according to the sequences obtained with an ABI 3700 automated DNA
sequencer. A total of 2,929 sequencing reactions were performed, and 2,517 high-
quality sequence fragments were assembled with InnerPeace software. The average
reading frame length was about 600 bp with eightfold coverage of the whole genome.
During the final stages of assembly, gaps were filled by sequencing PCR products
amplified directly from the whole virus DNA with 32 oligonucleotide primers.

Computer-assisted analysis. Nucleotide and amino acid sequences, restriction
enzyme patterns, and repeated sequences were compiled and analyzed with the
programs of the DNASTAR software package (Lasergene). Putative ORFs were
predicted one by one by finding the start codon AUG and the rest of the coding
sequence with the DNASTAR software package; ORFs encoding more than 40
amino acids (120 bp) were considered putative ORFs. The putative viral genes
were obtained from the putative ORFs of more than 40 codons by selecting
nonoverlapping ORFs. When two ORFs overlapped, the larger ORF was gen-
erally chosen as the putative viral gene. DNA and protein comparisons with
entries in the sequence databases were performed with BLAST programs (1, 24).
Comparison of the homological sequence regions of LCDV-C, LCDV-1, and
other iridoviruses was performed with BLAST programs. A phylogenetic tree
was constructed by the MegAlign program of DNASTAR software on the basis
of amino acid sequence alignment of the known major capsid protein (MCPs) of
different iridoviruses, including LCDV-C, LCDV-1 (LCDV isolated from United
States), CIV (Chilo iridescent virus), ISKNV, RSIV (Red Sea bream disease
iridovirus), FV3 (frog virus 3), BIV (Bohie iridovirus), TFV, and EHNV (epi-
zootic hematopoietic necrosis virus).

Nucleotide sequence accession number. The complete nucleotide sequence of
the LCDV-C genome was deposited in GenBank under accession no. AY380826.

RESULTS AND DISCUSSION

Determination of the nucleotide sequence of the LCDV-C ge-
nome. The complete nucleotide sequence of the LCDV-C ge-
nome was determined by applying the whole-genome shotgun
sequencing strategy. The LCDV-C genome consists of 186,250 bp
(Table 1). Among the sequenced vertebrate iridoviruses, LCDV-
1is 102,653 bp (33), TFV is 105,057 bp (14), ISKNV is 111,362
bp (13), and ATV is 106,332 bp (19). LCDV-C has of the largest
genome among them. However, another invertebrate iridovi-
rus, CIV, which was analyzed by Jakob et al. (16), has a ge-
nome larger (212,482 bp) than that of the LCDV-C. The base
composition of the LCDV-C genome was found to be 27.25%
G+C. The low G+C ratio is similar to those of LCDV-1
(29.07%) (33) and CIV (28.63%) (16) but is significantly dif-
ferent from those of ISKNV (54.78%) (13), TFV (55.01%) (14),
and ATV (54%) (19). Therefore, the markedly low G+C con-
tent is a characteristic of the genus Lymphocystivirus.

In addition, about 0.4% nucleotide replacement hetero-
geneity has been observed from the repeatedly sequenced
LCDV-C genome sequences, and the majority of the replace-
ments are in the noncoding regions. The polymorphism might
be related to the virus materials used for sequencing, because
the virus materials could be potentially heterogenous, contain-
ing sequences from a number of different variant viruses.

Organization and coding capacity of the LCDV-C genome.
Computer-assisted analysis of the LCDV-C genomic DNA se-
quence revealed the presence of 240 potential ORFs. As shown
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g in Table 2, these ORFs encode polypeptides ranging from 40
2| . e to 1,193 amino acids. The analysis of the coding strategy of the
= ) . .
£ 3 g 240 potential ORFs revealed 176 largely nonoverlapping

o . . .

3| EE OREFs that are likely to represent putative viral genes. As
= ff z% shown in Table 1, the numbers of total potential ORFs and
g putative genes are related to the sizes of the genomes of these
= pbu i characterized iridoviruses. The percent coding densities and
215, ST the average lengths of ORFs for the five sequenced iridovi-
5|8°% RERS ruses were analyzed and compared. As shown in Table 1, the
= < < D_‘Im y p

° Y percent coding density of LCDV-C is 67% and is the lowest
7 among the iridoviruses. Moreover, the average length of each
go Sy SIS ORF in the LCDV-C genome is 702 bp, also the smallest
gE|E%8 =3 among the iridoviruses. The unusual low coding density may be
S| 5e TS . . s

T =g S8 related to the presence of large noncoding regions within the

®F SRSEN

gene organization and structure of LCDV-C. In the sequenced
iridoviruses, the coding densities of lymphocystiviruses LCDV-

g 1 and LCDV-C are all low and LCDV-C contains a large
o g number of repeated sequences, which are predominantly con-
3 g centrated in the gaps between two neighbor ORFs. For exam-
EF 2 ple, the longest gap is up to 1,895 bp and is located between
?;j; jE; ORFO086L and ORFO087L (Fig. 1). Thus, the LCDV-C low
?;E “E = coding density is consistent with the high degree of large non-
ah é E E § % % coding regions. .
IS co £ 3 Figure 1 shows a linear map of the 176 largely nonoverlap-

ping ORFs and their sizes, positions, and orientations in the

Homologues to LCDV-1

= é % % é é . L.CI?V-C genome. In the 176 putative genes, 103 genes have
. % s |2 gk 2 £ & significant homqlogy to the C'orrespondmg OREFs of LCDV-'l,
g g s ala! N N ° but there are still 73 potential genes that were not found in
S sz 2R Z ~ £ = LCDV-1 and other iridoviruses (Fig. 1; Table 2). Among the
Q-|> - . o § 73 genes, it was found that 8 genes, ORF002L, ORFO011L,
ol |22l =€ @ S S ORF016L, ORF047R, ORF051L, ORF058L, ORF209R, and
. E é’ % :H\: E § § P ORF216L, contained coding sequences for conserved domains
2 §§ S I = = %-"-2 of other cellular proteins (Table 2). For example, ORF002L
& " RS « « £3 contains the coding sequence for the caspase recruitment do-
_ g 2 main involved in apoptotic signaling. ORFO16L contains the
5 < = coding sequence for tumor necrosis factor receptor domains.
8 ! S .f.E ORF209R and -216L contain the coding sequences for an
< S g E é N-terminal domain of cell division protein 48 (CDC48) and a
3 25 collagen triple-helix repeat. ORF011L, ORF047R, and ORF058L
% U85 may encode thymidylate synthase, a site-specific recombinase,
g8 fl@ng and a transmembrane receptor, respectively (Table 2). Inter-
5 g2 SEE estingly, the protein product deduced from ORFO51L (Table
5. £ g %E E] 2) is highly related to reverse transcriptase (RVT), and the
EE %E % g%” C-terminal region from amino acid 191 to 446 has 26.3% iden-
3E 55 Z2E tity to the consensus 200-amino-acid sequence of RVT (CD
57 5 8B g2% accession no. pfam00078.11, RVT) (21). Furthermore, there
e 2 g 585 are 65 novel genes that do not show any significant homology
% % § 2 g ; with the sequences in public databases (Table 2).
g <A £ ; £ Repeated sequences. Searching by the program GeneQuest
£%¢ of the DNASTAR software package revealed a large number
s2s |og3ns 2g aux |2 % § of tandem and overlapping direct repeated and inverted re-
SES | - > = 825 peated sequences in the LCDV-C genome. Although they are
o ol o < weo|22g distributed randomly, two concentrated regions of direct re-
Y 82898 TE 4| 253 peated sequences were discovered. The first concentrated re-
%g D' [*T :| :| = %| = === é § g gion is located from bp 1 to 530 of the genome. In the 530 bp
§§ % % é % g E % § g § 2 E E of sequence, there are eight almost identical repeated se-
“ SEE=ZE X3 rR= |2 g8 quences. Each repeat is composed 66 bp. As shown in Fig. 2,
% 5 § only six nucleotide changes occur in the first seven repeats. In
- ST & g2 xg=2 [‘5 :? & the eighth repeat, the first 55-bp segment is also identical to
o SIS &G S8 those of the first seven repeats. And each repeat sequence
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FIG. 1. Genomic organization of the LCDV-C. Arrows, locations of 176 potentially putative genes with respect of their sizes, positions, and
orientations. The scale is in kilobase pairs. Black arrows, ORFs that are homologous to the potentially putative genes of LCDV-1; white arrows,
potentially novel genes that were not found in LCDV-1 and other iridoviruses.

includes three short AAAGAA repeated sequences (Fig. 2).
The second concentrated region, located from 124334 to 124755,
includes 10 repeated sequences, and each repeat consists of 36
bp. In addition, the 52-bp repeated sequence TATATATATA
TA. . .was observed at positions 25336 to 25387. Furthermore,
other short repeated sequences were found dispersed all over
the genome. For example, there are 73 copies of the 12-bp
direct repeated sequence TTAACCCTTTAA in the genome,
and 95% of them are located in the noncoding region.

In previous studies, some repeated sequences have been
found in certain regions of several iridoviruses, such as FV3,
LCDV-1 (27), CIV (7, 8), RSIV (35), and ISKNV (13), but the
extensive and concentrated repeat sequences were observed
only in the LCDV-C genome. He et al. revealed a complex
cluster of multiple tandem and overlapping direct repeated
sequences of 496 bp at positions 23273 to 23768 in the com-
plete genome of ISKNV (13), but the characterization and
function were unknown.

Relatedness of LCDV-C gene products to other proteins in
databases. The comparison of amino acid sequences deduced
from the LCDV-C ORFs with entries in protein databases led
to the identification of several kinds of functionally character-
ized proteins in other species. These proteins included some
enzymes involved in virus replication, transcription, and mod-
ification, such as DNA polymerase (ORF203L), RNA-depen-
dent DNA polymerase (ORF051L), DNA-directed RNA poly-
merase (ORF115R and ORF191R), DNA methyltransferase
(ORF086L), RNA polymerase (ORF025R), site-specific re-
combinase (ORF047R), ribonucleotide reductase (ORF041L
and ORF172L), helicase (ORF75L), deoxynucleoside kinase

(ORF027R), thymidylate synthase (ORF011L), protein kinase
(ORFO013L, ORF045R, ORF166L, ORF175R, and ORF178L),
phosphatase (ORF148L), acetyl-coenzyme A hydrolase
(ORF161L), and papain-like proteinase (ORF224L) (Table 2).
Some of the viral proteins that might be involved in virus-host
interaction were also identified from LCDV-C ORFs by
significant amino acid sequence homology, such as tumor
necrosis factor receptor (ORF016L), B-hydroxysteroid dehy-
drogenase (ORF003R), membrane-bound metallopeptidase
(ORFO033R), histone-like transcription factor (ORF054R),
ATPase (ORFO080L, ORF209R, and ORF237L), transmem-
brane receptor (ORF058L), and caspases (ORF(002L) (Table
2). Just as for other sequenced iridoviruses (13, 14, 16, 17, 18,
33), the majority of these enzymes for LCDV-C represent
homologues of cellular enzymes involved in virus replication
and transcription and are shared by all iridoviruses (Table 3).
Since iridoviruses form a viromatrix in cytoplasm and since
theirreplication, transcription, and nucleotide metabolism main-

TTGATCYARARGAAACTTTAGAGGAAGCGTTGARAGAAGTAGATCTATCGGCTAAGGTIARAAGAAGGATTGAT 72
CYAAAGARACTTTAGAGGRAGCGTTGARAGARGTAGATCTATCGGCTAAGGT IARAGA ATTGAC 139
CHAAAGAAACTTTAGAGGAAGCGTTYAAAGRAGTAGATCTATCGGCTAAGGTTARAGAAGGATTGA 205
CTAARGRAACTTTAGRAG GTTGAAAGRAAGTAGATCTATCGGCTARGGTTARAGAAGGATTGA 271
CTHAARAGARACTTTAGAAGAAGCGTTJARAGAAGTAGATCTATCGGCTARAGTTARAGARAGGATTGA 337
CTAARGAAACTTTAGAGGAAGCGTTEAAAGAAGTAGATCTATCGGCTARAGT IARAGRAGGATTGA 403
CTARRGAAACTTTAGRAGAAGCGTTYRAAAGAAGTAGATCTATCGGCTARAGT TAAAGAAGGATTGA 469
CTAA CTTTAGAGGAAGCGTTGAARGAAGTAGATCTATCGGCTAAGGT TAACGATACAACAG 535

FIG. 2. Repeated sequences of bp 1 to 530 in the LCDV-C ge-
nome. There are eight direct repeated sequences with 66 bp, and each
repeat sequence includes three short AAAGAA repeated sequences
(boxes). The individual changed nucleotides and different nucleotides
beyond the repeats are in boldface.
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TABLE 3. The common genes involved in virus replication and transcription in the LCDV-C, LCDV-1, TFV,
and ISKNV genomes and their ORF numbers
OREF for:
Function Protein(s)
LCDV-C LCDV-1¢ TFV® ISKNV?
DNA repication, modification and processing DNA polymerase, DdDP 203L ORF5 63R 19R
DNA methyltransferase, DMet 86L ORF51 89R 46L
Helicase 75L ORF4 9L, 56L 63L
XPG/RAD2-type nuclease 169R ORF34 101R 271
Transcription of DNA Subunit 1 of DARP I 191R ORF1 8L 28L
DdRP 11 25R ORF3 65R 34R
RNase III 187R ORF44 85L 87R
RBRD 41L ORF26 71L 24R

“ The National Center for Biotechnology Information-derived ORF numbers (GenBank accession no. NC_001824) do not correspond to the published LCDV-1 ORF
numbers. They are consistent with the numbers in Table 2, column Homologues to LCDV-1.

® Indicates the published ORF numbers in references 13 and 14.

ly occur outside of the nucleus (42), they must establish their
own replication and transcription machinery (18). Further
studies on these shared genes, therefore, have significant im-
plications for understanding the evolution and phylogeny of
iridoviruses.

Comparison of LCDV-C to LCDV-1. A search of the Gen-
Bank database with the 176 individual ORFs revealed 103
homologues to those in the LCDV-1 genome (Fig. 1), account-
ing for 58.5% of the LCDV-C ORFs. However, comparison of
the genome organizations, i.e., the putative gene orders, re-
vealed less similarity between LCDV-C and LCDV-1. The
most similar sequence between LCDV-C and LCDV-1 was
located at positions 15055 to 25423 (~11 kb). It includes eight
ORFs and shows 68% identity of nucleotide sequences with
those of LCDV-1. Although some similarity between putative
gene products of LCDV-C and the corresponding viral pro-
teins of LCDV-1 was revealed, no whole colinearity was de-
tected when the ORF arrangements and the coding strategies
of the LCDV-C and LCDV-1 genomes were compared. The
significant differences between LCDV-C and LCDV-1 ge-
nomes in gene organization and gene order are similar to those
between vertebrate fish LCDV-1 and invertebrate insect CIV
(18). The data suggest that there have been a large number of
genetic rearrangements between LCDV-C and LCDV-1 and
that the rearrangements might be of high complexity.

During the last decades, lymphocystis diseases throughout
the world have been extensively described (34) and have raised
serious economic problems in modern aquaculture, fish farm-
ing, and wildlife fish. In recent years, many new iridovirus-like
pathogens have been isolated from over 100 different species
of fish and other cold-blooded vertebrates worldwide (4, 10,
45). Indeed, LCDV and iridovirus-like pathogens vary world-
wide with respect to host range and virulence, but intraspecific
variation between them has been less extensively characterized.
The currently studied LCDV-C was isolated in China from cul-
tured flounder (Paralichthys olivaceus) with lymphocystis disease
(31, 46). LCDV-C and LCDV-1 have related hosts (LCDV-1 was
isolated from the flounder Platichthys flesus), but their geograph-
ical and temporal distributions are very different. Obviously, the
significant difference in genome organization between LCDV-C
and LCDV-1 suggests that such genomic differences might exist in
other isolates of fish. For this reason, more work on comparative

genome analysis of LCDV and other unclassified iridovirus-like
isolates from distinct sources remains to be done. Recently, Gold-
berg et al. (11) explored intraspecific strain variation within an
emerging iridovirus of North American warm-water fishes, large-
mouth bass virus, by amplified fragment length polymorphism
analysis and revealed that the most virulent viral strain replicated
to the highest level in fish. As suggested by Jakob and Darai (18),
a substantial revision of the taxonomy of LCDV isolates and
other iridoviruses based on molecular anatomy and phylogeny is
required.

Relationship of LCDV-C to other iridoviruses and its taxo-
nomic position. The highest homologies were detected be-
tween putative gene products of LCDV-C and the correspond-
ing viral proteins of LCDV-1, but some important genes
involved in virus replication, transcription, and modification in
the LCDV-C genome have been identified previously in three
other vertebrate iridovirus genomes that were completely se-
quenced, including the LCDV-1 (32), TFV (14), and ISKNV
(13) genomes. As shown in Table 3, these genes included those
encoding DNA polymerase, DNA methyltransferase, helicase,
XPG/RAD2-type nuclease, subunit 1 of DNA-dependent
RNA polymerase (DdRP), DdRP II, RNase III, and ribonu-
cleotide reductase (RBRD).

The LCDV-C MCP is encoded by ORF043L and is com-
posed of 459 amino acids (Table 2). It presents the highest
identity to those of LCDV-1 and other iridoviruses among the
putative gene products of LCDV-C. Homology analysis showed
that the MCPs of LCDV-1 (33), CIV (16), TFV (14), FV3 (20),
EHNV (22), BIV (3), RSIV (23), and ISKNV (13) had 87.6,
53.0, 51.1, 50.9, 50.7, 50.7, 49.0, and 49.2% identity to that of
LCDV-C, respectively. Based on the multiple alignments of
amino acid sequences of nine complete MCPs, a phylogenetic
tree was constructed. As shown in Fig. 3, the nine iridoviruses
are divided into four groups, the lymphocystiviruses LCDV-C
and LCDV-1; the insect iridoviruses, including CIV; the rana-
viruses, including FV3, BIV, TFV, and EHNV; and the unas-
signed viruses ISKNV and RSIV. Interestingly, LCDV-C and
LCDV-1 are clustered together, but their amino acid identity is
much less than that in the other three clusters. Recently, Jakob
and Darai (18) drew the conclusion that a cricket iridovirus
(CrIV) isolate and CIV are not different species because of the
high identity (97.9%) of their MCP amino acid sequences and
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FIG. 3. Phylogenetic tree based on the multiple alignments of the amino aced sequences of the MCPs of iridoviruses. The GenBank accession
numbers for the virus nucleotide sequences are as follows: LCDV-1, AAC24486; CIV, AAKS82135; ISKNV, AAL98730; RSIV, BAC66968; FV3,

Q67473; TFV, AF389451; EHNV, AA032315; BIV, AY187046.

considered CrIV a variant or a strain of CIV. The MCPs of
FV3, TFV, ENHV, and BIV have over 96.8% identity (Fig. 3),
suggesting that these viruses might also be different variants of
the same species. And the identities of MCPs of ISKNV and
RSIV were also found to be up to 98.2%. However, LCDV-C
was identified to be the Chinese LCDV variant on the basis of
the infection symptoms (31, 40) and viral morphology (46), but
the MCPs of LCDV-C and LCDV-1 have only 87.6% identity,
and there are significant differences between their genome
sizes (Table 2) and gene organizations (Fig. 1). The unexpect-
ed levels of divergence between their genomes in size, gene
organization, and gene product identity suggest that LCDV-C
and LCDV-1 shouldn’t belong to a same species and that
LCDV-C should be considered a separate species, different
from LCDV-1.

LCDV-C is the second LCDV isolate whose complete ge-
nomic sequence has been determined since the first complete
genome of LCDV was sequenced from the LCDV-1 isolate in
1997 (33). Up to now, more than 100 new iridovirus-like iso-
lates have been reported from over 100 different species of fish
in seawater and freshwater worldwide (34). Of the numerous
virus isolates, only two isolates have been completely se-
quenced, and a great number of divergences between them
have been revealed. Obviously, a handicap for further analysis
is the lack of genome sequence information for other iridovi-
rus-like isolates (18). Therefore, the significant divergences
between LCDV-C and LCDV-1 draw our attention to the dif-
ferent iridovirus-like isolates. The detailed molecular anatomy
and functional analyses of these different iridovirus-like iso-
lates will provide more novel and distinct knowledge about their
relationship and taxonomic position among the iridoviruses.
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